Etude cristallochimique de LiPN₂: Une structure derivée de la cristobalite

ROGER MARCHAND, PAUL L'HARIDON, ET YVES LAURENT*

Laboratoire de Chimie Minérale C, L.A. 254, Université de Rennes I, Campus de Beaulieu, F 35042 Rennes-Cedex, France

Received January 4, 1982; in revised form February 16, 1982

On a préparé LiPN₂ par réaction entre les nitrures Li₈N et P₃N₅. La maille cristalline est quadratique avec a = 4,567(1) et c = 7,140(4) Å. Le groupe spatial est $I\overline{42}d$. La structure dérive de celle de la cristobalite β et est isotype de celle de CaGeN₂. Elle est constituée d'un squelette de tétraèdres PN₄ dans lequel s'insèrent les atomes de lithium. On a discuté les valeurs de l'angle de rotation ϕ des tétraèdres, du rapport c/a et de l'angle θ (N-P-N) en fonction de la coordonnée x des atomes d'azote.

LiPN₂ has been prepared by reaction between Li₃N and P₃N₅ nitrides. The unit cell is tetragonal with a = 4.567(1) and c = 7.140(4) Å. The space group is $I\overline{4}2d$. The structure is related to the β cristobalite type and is isostructural with CaGeN₂. It is built up from a PN₄ tetrahedra framework in the holes of which the lithium atoms are localized. The values of the rotation angle ϕ of tetrahedra, c/a ratio and θ (N-P-N) angle have been discussed in relation to the parameter x of the nitrogen atoms.

Introduction

La substitution d'oxygène par de l'azote dans le réseau anionique d'un composé possédant la structure de SiO₂ de type cristobalite peut se faire selon deux schémas. Dans le premier cas, on conserve l'élément tétravalent du squelette tétraédrique qui devient chargé négativement. On assure l'électroneutralité du réseau par un second cation. Un composé comme CaGeN₂ (1) présente une structure cristobalite "remplie." Dans le second cas, on remplace l'élément tétravalent par un élément pentavalent et à condition de ne substituer qu'un seul atome d'oxygène par de l'azote, l'ensemble reste neutre comme dans l'oxy-

* Correspondance à adresser à Monsieur Y. Laurent.

0022-4596/82/080126-05\$2.00/0 Copyright © 1982 by Academic Press, Inc. All rights of reproduction in any form reserved. nitrure PON (2). Si la substitution de l'oxygène est totale, le squelette est formé de tétraèdres PN_4 et l'électroneutralité doit être assurée par un élément monovalent.

L'étude de LiPN₂ montre que cette phase appartient à la famille des composés présentant une structure cristobalite "remplie."

Preparation

LiPN₂ avait déjà été préparé par action de l'ammoniac sur le phosphure LiP ou par réaction entre LiNH₂ et PN₂H (3). Nous l'avons nous-mêmes obtenu par réaction entre Li₃N et P₃N₅. Les mixtes initiaux sont chauffés à 800°C en tubes de nickel protégés intérieurement par une mince feuille de tungstène et scellés sous atmosphère d'azote. La poudre obtenue, de couleur gris clair, est peu sensible à l'humidité.

TABLEAU I

Coordonnées atomiques				
Atome	Position	x	у	z
Li	4b	0	0	1
Р	4a	0	0	0
N	8d	0,146(9)	ł	ł

Etude Structurale

L'étude du diagramme Debye-Scherrer de LiPN₂ montre que ce dernier présente une structure isotype de celle de CaGeN₂ qui est de type cristobalite "remplie" (1). La maille cristalline est quadratique et les paramètres affinés par une méthode de moindres carrés sont les suivants:

$$a = 4,567(1) \text{ Å}, \quad c = 7,140(4) \text{ Å},$$

 $V = 149 \text{ Å}^3.$

Les raies de diffraction observées sont compatibles avec le groupe spatial $I\bar{4}2d$ auquel appartient la cristobalite β et les structures qui en dérivent, à l'exception des composés B' B'' X_4 où l'ordre entre B' et B'' impose le groupe spatial $I\bar{4}$ de plus basse symétrie (4).

Les intensités ont été mesurées par comptage à l'aide d'un ensemble Rigaku. Les calculs ont été réalisés en utilisant un programme d'affinement écrit pour les intensités d'un diagramme de poudre. On a maintenu constants les facteurs d'agitation thermique isotrope des différents atomes (B = 0.5 Å^2 pour le phosphore et 0.8 Å^2 pour le lithium et l'azote). Les seules variables sont le facteur d'échelle et la coordonnée x des atomes d'azote. Il faut remarquer que le nombre de raies observées est restreint du fait des faibles valeurs des paramètres de la maille et du degré élevé de symétrie du groupe spatial. De plus, les raies présentent un profil élargi qui rend difficile la séparation de certaines d'entre elles. Il en résulte une valeur du facteur R sur les intensités assez élevée (R = 0,12) et une incertitude assez grande sur la coordonnée variable des atomes d'azote.

Le Tableau I rassemble les coordonnées atomiques et le Tableau II les valeurs observées et calculées des distances interréticulaires et des intensités des différents plans *hkl*.

La Fig. 1 est une vue perspective de la structure. Les atomes de phosphore sont au centre de tétraèdres d'azote dont les sommets sont communs à deux d'entre eux.

Etant donné la valeur importante des écart-types, la déformation des tétraèdres n'est pas significative. Les angles tétraédriques calculés sont en effet 108,2 (7) (\times 4) et 112,0 (7) (\times 2).

La distance P-N, égale à 1,60(2) Å est supérieure à la distance $\langle P-O \rangle$: 1,54 Å. Dans l'oxynitrure PON à structure cristobalite β (2) où les oxygène et azote sont répartis statistiquement sur une seule position du groupe spatial, la distance P-(O,N) est de 1,58 Å. On peut comparer ces va-

TABLEAU II

Données du diffractogramme de poudre $(Cu K\alpha_1)$

<i>l/l</i> ₀ exp	I/I_0 calc	d exp (Å)	hki
100	97	3,840	101
60	(∫ 56	2,394	112
69	՝՝ լ 5	2,285	200
2	2	2,111	103
0	10 5 9	1,963	211
8	10 1	1,924	202
0,4	0,5	1,784	004
8		1,614	220
11	11	1.550	213
0,4	0,5	1,488	301
0,8	0,9	1,444	310
11	13	1.406	204
0.8	0.7	1.363	105
10	12	1,339	312
	1// ₀ exp 100 69 2 8 0,4 8 11 0,4 0,8 10	$I/I_0 \exp$ $I/I_0 \operatorname{calc}$ 100 97 69 61 $\begin{cases} 56\\5 \end{cases}$ 2 2 8 10 $\begin{cases} 9\\1 \end{pmatrix}$ 0,4 0,5 8 11 1,0,4 0,5 0,8 0,9 11 13 0,8 0,7 10 12	$I/I_0 \exp$ $I/I_0 \operatorname{calc}$ $d \exp$ 100 97 3,840 69 61 56 2,394 5 2,285 2 2,111 8 10 9 1,963 1 1,924 0,4 0,5 1,784 8 1,614 11 1,550 0,4 0,5 1,488 0,8 0,9 1,444 11 13 1,406 0,8 0,7 1,363 10 12 1,339 12 1,339 10

OLi ON ∘P

FIG. 1. Vue perspective de la structure de LiPN₂.

leurs avec celles obtenues à partir des rayons donnés par Shannon (5): P-O = 1,55Å, P-N = 1,62 Å. Par contre, dans le nitrure double Mg₂PN₃ dont la structure dérive de celle de la wurtzite (6), la distance moyenne P-N = 1,76 Å est voisine de la somme des rayons tétraédriques (7).

L'examen des distances interatomiques montre donc que la structure de l'ammonophosphate LiPN₂ peut être décrite comme formée d'un squelette de tétraèdres PN₄ dans lequel s'insèrent les lithium. Ceux-ci sont environnés par quatre azote à la distance de 2,17(3) Å. Il existe aussi quatre autres azote seconds voisins à la distance de 2,99 Å. La première de ces distances s'accorde avec les valeurs des distances Li-N connues:

Composés	Réf.	Li–N (Å)	Composés	Réf.	Li–N (Å)
LiaN	(8)	1,94 et 2,13	LiMgN	(11)	2.152
LiNH	(9)	2,19	LiZnN	(H)	2.112
LiNH	(10)	2,15	Li ₂ CeN ₂	(12)	2.10
			LiSi ₂ N ₃	(13)	2.10

Discussion

Lors de l'étude structurale de CaGeN₂ (1), on avait montré que la structure dérivait de la structure C9 initialement proposée pour la cristobalite β (14) par une rotation des tétraèdres selon l'axe c. On peut également la considérer comme intermédiaire entre cette structure C9 et celle de la chalcopyrite. L'angle de rotation ϕ est égal à 0° dans le premier cas et de 45° dans le second. Cet angle peut aussi être calculé à partir de la coordonnée x des anions selon:

$$\phi = -\tan^{-1} (4x).$$

De plus, dans leur étude sur les structures de la cristobalite et celles qui en dérivent, O'Keeffe et Hyde (4) ont montré que si les tétraèdres restent réguliers, il existe entre le rapport c/a et la variable x la relation suivante:

$$c/a = (2 + 32x^2)^{1/2}$$

De même, si on appelle θ l'angle Si-O-Si dans SiO₂ ou *B*-X-B d'un composé ABX_2 , on *a*:

$$\theta = \cos^{-1} \left[(1 - 4 \cos^2 \phi)/3 \right]$$
$$= \cos^{-1} (16 x^2 - 3)/(48 x^2 + 3).$$

FIG. 2. Variation du rapport c/a en fonction de la coordonnée x de l'anion.

De ces relations, il découle les valeurs suivantes:

Structure C9: x = 0, $\phi = 0^{\circ}$, $c/a = 2^{1/2}$, $\theta = 180^{\circ}$, Structure chalcopyrite: x = 0.25, $\phi = 45^{\circ}$, c/a = 2, $\theta = 109^{\circ}28^{\circ}$.

Dans le cas de LiPN₂, la valeur expérimentale de x est 0,146 et l'angle de rotation ϕ est égal à 30°. Cette valeur peut être comparée à celle qui est observée dans les autres composés présentant ce type structural:

	x	φ	Réf.
β SiO ₂	0,09	20°	(15)
PON	0,137	29°	(2)
β ΚCoO2	0,13	27°	(16)
γ Li <i>B</i> O2	0,157	32°	(17)
CaGeN₂	0,164	33°	(I)

La valeur du rapport c/a déterminée à partir des paramètres de la maille est égale à 1,563. Elle est légèrement inférieure à la valeur calculée à partir de la coordonnée x: c/a = 1,638. Cette compression selon c est toutefois notablement plus faible que celle qui a été observée dans CaGeN₂ (1) et KCoO₂ (16), composés pour lesquels la valeur du rapport c/a est inférieure à 2^{1/2}. Sur la Fig. 2, on a rassemblé les valeurs expérimentales des rapports c/a en fonction du paramètre x et la courbe représente l'évolution de ce rapport dans le cas idéal où l'on aurait des tétraèdres réguliers.

On a vu enfin que l'angle θ (B-X-B) peut être calculé à partir de la coordonnée x de l'anion dans le cas des tétraèdres réguliers. O'Keeffe et Hyde (4) ont également montré que la valeur de cet angle tend à être la plus proche de l'angle tétraédrique mais que les valeurs plus élevées qu'on observe sont dues à la répulsion entre les atomes de type B non liés. Pour effectuer ce calcul, on utilise les rayons déterminés par Glidewell (18) à partir de la géométrie des molécules. Ces rayons ont des valeurs intermédiaires entre les rayons de covalence et ceux de van der Waals (rN = 1,14 Å, rP = 1,46 Å). L'ensemble des résultats pour les composés nitrures ou oxynitrures sont rassemblés ci-dessous:

Composés	θ	$\theta_1(^{\circ})$	θ ₂ (°)	θ 3(°)
PON	P-(O,N)-P	134	134	133
CaGeN₂	Ge-N-Ge	127	117	122
LiPN₂	P-N-P	131	127	131

 θ_1 = angle calculé à partir de x,

 θ_2 = angle calculé pour des contacts cation-cation non liés,

 $\theta_3 = angle expérimental.$

On observe un accord satisfaisant entre les valeurs expérimentales et les deux jeux de valeurs calculées.

Conclusion

LiPN₂ est un nouvel exemple de composé présentant des tétraèdres PN₄ qu'on peut comparer aux tétraèdres PO₄ des phosphates. Cet environnement tétraédrique du phosphore par de l'azote n'est actuellement connu que dans les composés $Mg_2PN_3(6)$ dont la structure dérive de celle de la wurtzite et Li₇PN₄ (19) de type antifluorine, mais dont la structure n'a pas été affinée.

Enfin, de même que Mg_2PN_3 est isostructural des composés $A^{I}B_{2}^{IV}N_3$ ($A^{I} = Li, B^{IV} =$ Si ou Ge), LiPN₂ possède, comme CaGeN₂, une structure cristobalite "remplie."

References

- M. MAUNAYE, J. GUYADER, Y. LAURENT, ET J. LANG, Bull. Soc. Fr. Mineral. Crist. 94, 347 (1971).
- 2. T. MILLERS, A. LODZINA, B. BONDARS, A. A. KUZYUKEVICH, ET A. VITOLA, *Izv. Akad. Nauk* SSSR Neorg. Mater. 15, 611 (1979).
- P. ECKERLIN, C. LANGEREIS, J. MAAK, ET A. RABENAU, Angew. Chem. 72, 268 (1960); et "Special Ceramics," édité par P. Popper, p. 79, Academic Press, London (1964).

- 4. M. O'KEEFFE ET B. G. HYDE, Acta Crystallogr. Sect. B 32, 2923 (1976).
- 5. R. D. SHANNON, Acta Crystallogr. Sect. A 32, 751 (1976).
- 6. R. MARCHAND ET Y. LAURENT, Mat. Res. Bull., sous presse.
- 7. E. PARTHE, "Cristallochimie des structures tétraédriques," Gordon & Breach, Paris (1972).
- 8. H. SCHULZ ET K. SCHWARZ, Acta Crystallogr. Sect. A 34, 999 (1978).
- 9. R. JUZA ET K. OPP, Z. Anorg. Allg. Chem. 266, 325 (1951).
- 10. R. JUZA ET K. OPP, Z. Anorg. Allg. Chem. 266, 313 (1951).
- 11. R. JUZA ET F. HUND, Z. Anorg. Allg. Chem. 257, 1 (1948).

- 12. D. HALOT ET J. FLAHAUT, C. R. Acad. Sci. 272, 465 (1971).
- 13. J. DAVID, Y. LAURENT, J. P. CHARLOT, ET J. LANG, Bull. Soc. Fr. Mineral. Crist. 96, 21 (1973).
- 14. R. G. WYCKOFF, Amer. J. Sci. 209, 448 (1925).
- 15. A. F. WRIGHT ET A. J. LEADBETTER, Philos. Mag. 31, 1391 (1975).
- 16. C. DELMAS, C. FOUASSIER, ET P. HAGENMULLER, J. Solid State Chem. 13, 165 (1975).
- 17. M. MAREZIO ET J. P. REMEIKA, J. Chem. Phys. 44, 3348 (1966).
- 18. C. GLIDEWELL, Inorg. Chem. Acta 12, 219 (1975).
- 19. J. F. BRICE, Thèse Nancy, France (1973).